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In this chapter we introduce vector spaces in full generality. The reader will notice some similarity
with the discussion of the space Rn in Chapter 5. In fact much of the present material has been
developed in that context, and there is some repetition. However, Chapter 6 deals with the notion
of an abstract vector space, a concept that will be new to most readers. It turns out that there
are many systems in which a natural addition and scalar multiplication are defined and satisfy the
usual rules familiar from Rn. The study of abstract vector spaces is a way to deal with all these
examples simultaneously. The new aspect is that we are dealing with an abstract system in which
all we know about the vectors is that they are objects that can be added and multiplied by a scalar
and satisfy rules familiar from Rn.

The novel thing is the abstraction. Getting used to this new conceptual level is facilitated by
the work done in Chapter 5: First, the vector manipulations are familiar, giving the reader more
time to become accustomed to the abstract setting; and, second, the mental images developed in
the concrete setting of Rn serve as an aid to doing many of the exercises in Chapter 6.

The concept of a vector space was first introduced in 1844 by the German mathematician
Hermann Grassmann (1809-1877), but his work did not receive the attention it deserved. It was
not until 1888 that the Italian mathematician Guiseppe Peano (1858-1932) clarified Grassmann’s
work in his book Calcolo Geometrico and gave the vector space axioms in their present form. Vector
spaces became established with the work of the Polish mathematician Stephan Banach (1892-1945),
and the idea was finally accepted in 1918 when Hermann Weyl (1885-1955) used it in his widely
read book Raum-Zeit-Materie (“Space-Time-Matter”), an introduction to the general theory of
relativity.

321



322 Vector Spaces

6.1 Examples and Basic Properties

Many mathematical entities have the property that they can be added and multiplied by a number.
Numbers themselves have this property, as do m×n matrices: The sum of two such matrices is again
m×n as is any scalar multiple of such a matrix. Polynomials are another familiar example, as are the
geometric vectors in Chapter 4. It turns out that there are many other types of mathematical objects
that can be added and multiplied by a scalar, and the general study of such systems is introduced
in this chapter. Remarkably, much of what we could say in Chapter 5 about the dimension of
subspaces in Rn can be formulated in this generality.
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Definition 6.1 Vector Spaces

A vector space consists of a nonempty set V of objects (called vectors) that can be
added, that can be multiplied by a real number (called a scalar in this context), and for
which certain axioms hold.1If v and w are two vectors in V , their sum is expressed as v+w,
and the scalar product of v by a real number a is denoted as av. These operations are
called vector addition and scalar multiplication, respectively, and the following axioms
are assumed to hold.

Axioms for vector addition
A1. If u and v are in V , then u+v is in V .

A2. u+v = v+u for all u and v in V .

A3. u+(v+w) = (u+v)+w for all u, v, and w in V .

A4. An element 0 in V exists such that v+0 = v = 0+v for every v in V .

A5. For each v in V , an element −v in V exists such that −v+v = 0 and v+(−v) = 0.

Axioms for scalar multiplication
S1. If v is in V , then av is in V for all a in R.

S2. a(v+w) = av+aw for all v and w in V and all a in R.

S3. (a+b)v = av+bv for all v in V and all a and b in R.

S4. a(bv) = (ab)v for all v in V and all a and b in R.

S5. 1v = v for all v in V .

The content of axioms A1 and S1 is described by saying that V is closed under vector addition and
scalar multiplication. The element 0 in axiom A4 is called the zero vector, and the vector −v in
axiom A5 is called the negative of v.

The rules of matrix arithmetic, when applied to Rn, give

Example 6.1.1

Rn is a vector space using matrix addition and scalar multiplication.2

It is important to realize that, in a general vector space, the vectors need not be n-tuples as in
Rn. They can be any kind of objects at all as long as the addition and scalar multiplication are
defined and the axioms are satisfied. The following examples illustrate the diversity of the concept.

1The scalars will usually be real numbers, but they could be complex numbers, or elements of an algebraic system
called a field. Another example is the field Q of rational numbers. We will look briefly at finite fields in Section ??.

2We will usually write the vectors in Rn as n-tuples. However, if it is convenient, we will sometimes denote them
as rows or columns.
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The space Rn consists of special types of matrices. More generally, let Mmn denote the set of
all m×n matrices with real entries. Then Theorem 2.1.1 gives:

Example 6.1.2

The set Mmn of all m×n matrices is a vector space using matrix addition and scalar
multiplication. The zero element in this vector space is the zero matrix of size m×n, and
the vector space negative of a matrix (required by axiom A5) is the usual matrix negative
discussed in Section 2.1. Note that Mmn is just Rmn in different notation.

In Chapter 5 we identified many important subspaces of Rn such as im A and null A for a matrix
A. These are all vector spaces.

Example 6.1.3

Show that every subspace of Rn is a vector space in its own right using the addition and
scalar multiplication of Rn.

Solution. Axioms A1 and S1 are two of the defining conditions for a subspace U of Rn (see
Section 5.1). The other eight axioms for a vector space are inherited from Rn. For example,
if x and y are in U and a is a scalar, then a(x+y) = ax+ay because x and y are in Rn.
This shows that axiom S2 holds for U ; similarly, the other axioms also hold for U .

Example 6.1.4

Let V denote the set of all ordered pairs (x, y) and define addition in V as in R2. However,
define a new scalar multiplication in V by

a(x, y) = (ay, ax)

Determine if V is a vector space with these operations.

Solution. Axioms A1 to A5 are valid for V because they hold for matrices. Also
a(x, y) = (ay, ax) is again in V , so axiom S1 holds. To verify axiom S2, let v = (x, y) and
w = (x1, y1) be typical elements in V and compute

a(v+w) = a(x+ x1, y+ y1) = (a(y+ y1), a(x+ x1))

av+aw = (ay, ax)+(ay1, ax1) = (ay+ay1, ax+ax1)

Because these are equal, axiom S2 holds. Similarly, the reader can verify that axiom S3
holds. However, axiom S4 fails because

a(b(x, y)) = a(by, bx) = (abx, aby)

need not equal ab(x, y) = (aby, abx). Hence, V is not a vector space. (In fact, axiom S5 also
fails.)
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Sets of polynomials provide another important source of examples of vector spaces, so we review
some basic facts. A polynomial in an indeterminate x is an expression

p(x) = a0 +a1x+a2x2 + · · ·+anxn

where a0, a1, a2, . . . , an are real numbers called the coefficients of the polynomial. If all the
coefficients are zero, the polynomial is called the zero polynomial and is denoted simply as 0. If
p(x) 6= 0, the highest power of x with a nonzero coefficient is called the degree of p(x) denoted as
deg p(x). The coefficient itself is called the leading coefficient of p(x). Hence deg (3+ 5x) = 1,
deg (1+ x+ x2) = 2, and deg (4) = 0. (The degree of the zero polynomial is not defined.)

Let P denote the set of all polynomials and suppose that

p(x) = a0 +a1x+a2x2 + · · ·
q(x) = b0 +b1x+b2x2 + · · ·

are two polynomials in P (possibly of different degrees). Then p(x) and q(x) are called equal
[written p(x) = q(x)] if and only if all the corresponding coefficients are equal—that is, a0 = b0,
a1 = b1, a2 = b2, and so on. In particular, a0+a1x+a2x2+ · · ·= 0 means that a0 = 0, a1 = 0, a2 = 0,
. . . , and this is the reason for calling x an indeterminate. The set P has an addition and scalar
multiplication defined on it as follows: if p(x) and q(x) are as before and a is a real number,

p(x)+q(x) = (a0 +b0)+(a1 +b1)x+(a2 +b2)x2 + · · ·
ap(x) = aa0 +(aa1)x+(aa2)x2 + · · ·

Evidently, these are again polynomials, so P is closed under these operations, called pointwise
addition and scalar multiplication. The other vector space axioms are easily verified, and we have

Example 6.1.5

The set P of all polynomials is a vector space with the foregoing addition and scalar
multiplication. The zero vector is the zero polynomial, and the negative of a polynomial
p(x) = a0 +a1x+a2x2 + . . . is the polynomial −p(x) =−a0 −a1x−a2x2 − . . . obtained by
negating all the coefficients.

There is another vector space of polynomials that will be referred to later.

Example 6.1.6

Given n ≥ 1, let Pn denote the set of all polynomials of degree at most n, together with the
zero polynomial. That is

Pn = {a0 +a1x+a2x2 + · · ·+anxn | a0, a1, a2, . . . , an in R}.

Then Pn is a vector space. Indeed, sums and scalar multiples of polynomials in Pn are again
in Pn, and the other vector space axioms are inherited from P. In particular, the zero
vector and the negative of a polynomial in Pn are the same as those in P.
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If a and b are real numbers and a < b, the interval [a, b] is defined to be the set of all real
numbers x such that a ≤ x ≤ b. A (real-valued) function f on [a, b] is a rule that associates to
every number x in [a, b] a real number denoted f (x). The rule is frequently specified by giving a
formula for f (x) in terms of x. For example, f (x) = 2x, f (x) = sinx, and f (x) = x2 +1 are familiar
functions. In fact, every polynomial p(x) can be regarded as the formula for a function p.

1

1

O

y =−x = g(x)

y = f (x)+g(x)
= x2 − x

y = x2 = f (x)

x

y
The set of all functions on [a, b] is denoted F[a, b]. Two functions

f and g in F[a, b] are equal if f (x) = g(x) for every x in [a, b], and
we describe this by saying that f and g have the same action. Note
that two polynomials are equal in P (defined prior to Example 6.1.5)
if and only if they are equal as functions.

If f and g are two functions in F[a, b], and if r is a real number,
define the sum f +g and the scalar product r f by

( f +g)(x) = f (x)+g(x) for each x in [a, b]
(r f )(x) = r f (x) for each x in [a, b]

In other words, the action of f + g upon x is to associate x with the number f (x)+ g(x), and
r f associates x with r f (x). The sum of f (x) = x2 and g(x) = −x is shown in the diagram. These
operations on F[a, b] are called pointwise addition and scalar multiplication of functions and
they are the usual operations familiar from elementary algebra and calculus.

Example 6.1.7

The set F[a, b] of all functions on the interval [a, b] is a vector space using pointwise
addition and scalar multiplication. The zero function (in axiom A4), denoted 0, is the
constant function defined by

0(x) = 0 for each x in [a, b]

The negative of a function f is denoted − f and has action defined by

(− f )(x) =− f (x) for each x in [a, b]

Axioms A1 and S1 are clearly satisfied because, if f and g are functions on [a, b], then f +g
and r f are again such functions. The verification of the remaining axioms is left as
Exercise 6.1.14.

Other examples of vector spaces will appear later, but these are sufficiently varied to indicate
the scope of the concept and to illustrate the properties of vector spaces to be discussed. With
such a variety of examples, it may come as a surprise that a well-developed theory of vector spaces
exists. That is, many properties can be shown to hold for all vector spaces and hence hold in every
example. Such properties are called theorems and can be deduced from the axioms. Here is an
important example.

Theorem 6.1.1: Cancellation
Let u, v, and w be vectors in a vector space V . If v+u = v+w, then u = w.
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Proof. We are given v+u = v+w. If these were numbers instead of vectors, we would simply
subtract v from both sides of the equation to obtain u = w. This can be accomplished with vectors
by adding −v to both sides of the equation. The steps (using only the axioms) are as follows:

v+u = v+w
−v+(v+u) =−v+(v+w) (axiom A5)
(−v+v)+u = (−v+v)+w (axiom A3)

0+u = 0+w (axiom A5)
u = w (axiom A4)

This is the desired conclusion.3

As with many good mathematical theorems, the technique of the proof of Theorem 6.1.1 is
at least as important as the theorem itself. The idea was to mimic the well-known process of
numerical subtraction in a vector space V as follows: To subtract a vector v from both sides of a
vector equation, we added −v to both sides. With this in mind, we define difference u−v of two
vectors in V as

u−v = u+(−v)

We shall say that this vector is the result of having subtracted v from u and, as in arithmetic,
this operation has the property given in Theorem 6.1.2.

Theorem 6.1.2
If u and v are vectors in a vector space V , the equation

x+v = u

has one and only one solution x in V given by

x = u−v

Proof. The difference x = u−v is indeed a solution to the equation because (using several axioms)

x+v = (u−v)+v = [u+(−v)]+v = u+(−v+v) = u+0 = u

To see that this is the only solution, suppose x1 is another solution so that x1 +v = u. Then
x+v = x1 +v (they both equal u), so x = x1 by cancellation.

Similarly, cancellation shows that there is only one zero vector in any vector space and only one
negative of each vector (Exercises 6.1.10 and 6.1.11). Hence we speak of the zero vector and the
negative of a vector.

The next theorem derives some basic properties of scalar multiplication that hold in every vector
space, and will be used extensively.

3Observe that none of the scalar multiplication axioms are needed here.
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Theorem 6.1.3
Let v denote a vector in a vector space V and let a denote a real number.

1. 0v = 0.

2. a0 = 0.

3. If av = 0, then either a = 0 or v = 0.

4. (−1)v =−v.

5. (−a)v =−(av) = a(−v).

Proof.

1. Observe that 0v+ 0v = (0+ 0)v = 0v = 0v+0 where the first equality is by axiom S3. It
follows that 0v = 0 by cancellation.

2. The proof is similar to that of (1), and is left as Exercise 6.1.12(a).

3. Assume that av = 0. If a = 0, there is nothing to prove; if a 6= 0, we must show that v = 0.
But a 6= 0 means we can scalar-multiply the equation av = 0 by the scalar 1

a . The result
(using (2) and Axioms S5 and S4) is

v = 1v =
(1

aa
)

v = 1
a(av) = 1

a0 = 0

4. We have −v+v = 0 by axiom A5. On the other hand,

(−1)v+v = (−1)v+1v = (−1+1)v = 0v = 0

using (1) and axioms S5 and S3. Hence (−1)v+v = −v+v (because both are equal to 0),
so (−1)v =−v by cancellation.

5. The proof is left as Exercise 6.1.12.4

The properties in Theorem 6.1.3 are familiar for matrices; the point here is that they hold in every
vector space. It is hard to exaggerate the importance of this observation.

Axiom A3 ensures that the sum u+(v+w) = (u+v)+w is the same however it is formed, and
we write it simply as u+v+w. Similarly, there are different ways to form any sum v1+v2+ · · ·+vn,
and Axiom A3 guarantees that they are all equal. Moreover, Axiom A2 shows that the order in
which the vectors are written does not matter (for example: u+v+w+z = z+u+w+v).

Similarly, Axioms S2 and S3 extend. For example

a(u+v+w) = a [u+(v+w)] = au+a(v+w) = au+av+aw

for all a, u, v, and w. Similarly (a+ b+ c)v = av+ bv+ cv hold for all values of a, b, c, and v
(verify). More generally,

a(v1 +v2 + · · ·+vn) = av1 +av2 + · · ·+avn

(a1 +a2 + · · ·+an)v = a1v+a2v+ · · ·+anv
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hold for all n ≥ 1, all numbers a, a1, . . . , an, and all vectors, v, v1, . . . , vn. The verifications are
by induction and are left to the reader (Exercise 6.1.13). These facts—together with the axioms,
Theorem 6.1.3, and the definition of subtraction—enable us to simplify expressions involving sums
of scalar multiples of vectors by collecting like terms, expanding, and taking out common factors.
This has been discussed for the vector space of matrices in Section 2.1 (and for geometric vectors in
Section 4.1); the manipulations in an arbitrary vector space are carried out in the same way. Here
is an illustration.

Example 6.1.8

If u, v, and w are vectors in a vector space V , simplify the expression

2(u+3w)−3(2w−v)−3[2(2u+v−4w)−4(u−2w)]

Solution. The reduction proceeds as though u, v, and w were matrices or variables.

2(u+3w)−3(2w−v)−3[2(2u+v−4w)−4(u−2w)]

= 2u+6w−6w+3v−3[4u+2v−8w−4u+8w]

= 2u+3v−3[2v]
= 2u+3v−6v
= 2u−3v

Condition (2) in Theorem 6.1.3 points to another example of a vector space.

Example 6.1.9

A set {0} with one element becomes a vector space if we define

0+0 = 0 and a0 = 0 for all scalars a.

The resulting space is called the zero vector space and is denoted {0}.

The vector space axioms are easily verified for {0}. In any vector space V , Theorem 6.1.3 shows
that the zero subspace (consisting of the zero vector of V alone) is a copy of the zero vector space.

Exercises for 6.1

Exercise 6.1.1 Let V denote the set of ordered
triples (x, y, z) and define addition in V as in R3.
For each of the following definitions of scalar multi-

plication, decide whether V is a vector space.

a. a(x, y, z) = (ax, y, az)
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b. a(x, y, z) = (ax, 0, az)

c. a(x, y, z) = (0, 0, 0)

d. a(x, y, z) = (2ax, 2ay, 2az)

b. No; S5 fails.

d. No; S4 and S5 fail.

Exercise 6.1.2 Are the following sets vector spaces
with the indicated operations? If not, why not?

a. The set V of nonnegative real numbers; ordi-
nary addition and scalar multiplication.

b. The set V of all polynomials of degree ≥ 3,
together with 0; operations of P.

c. The set of all polynomials of degree ≤ 3; op-
erations of P.

d. The set {1, x, x2, . . .}; operations of P.

e. The set V of all 2 × 2 matrices of the form[
a b
0 c

]
; operations of M22.

f. The set V of 2×2 matrices with equal column
sums; operations of M22.

g. The set V of 2×2 matrices with zero determi-
nant; usual matrix operations.

h. The set V of real numbers; usual operations.

i. The set V of complex numbers; usual addition
and multiplication by a real number.

j. The set V of all ordered pairs (x, y) with the
addition of R2, but using scalar multiplication
a(x, y) = (ax, −ay).

k. The set V of all ordered pairs (x, y) with the
addition of R2, but using scalar multiplication
a(x, y) = (x, y) for all a in R.

l. The set V of all functions f : R → R with
pointwise addition, but scalar multiplication
defined by (a f )(x) = f (ax).

m. The set V of all 2× 2 matrices whose entries
sum to 0; operations of M22.

n. The set V of all 2×2 matrices with the addi-
tion of M22 but scalar multiplication ∗ defined
by a∗X = aXT .

b. No; only A1 fails.

d. No.

f. Yes.

h. Yes.

j. No.

l. No; only S3 fails.

n. No; only S4 and S5 fail.

Exercise 6.1.3 Let V be the set of positive real
numbers with vector addition being ordinary multi-
plication, and scalar multiplication being a · v = va.
Show that V is a vector space.

Exercise 6.1.4 If V is the set of ordered pairs (x, y)
of real numbers, show that it is a vector space with
addition (x, y) + (x1, y1) = (x + x1, y+ y1 + 1) and
scalar multiplication a(x, y) = (ax, ay+a−1). What
is the zero vector in V?
The zero vector is (0, −1); the negative of (x, y) is
(−x, −2− y).

Exercise 6.1.5 Find x and y (in terms of u and
v) such that:

2x+ y=u
5x+ 3y= v

a) 3x− 2y=u
4x− 5y= v

b)

b. x = 1
7(5u−2v), y = 1

7(4u−3v)

Exercise 6.1.6 In each case show that the condi-
tion au+bv+cw= 0 in V implies that a = b = c = 0.

a. V = R4; u = (2, 1, 0, 2), v = (1, 1, −1, 0),
w = (0, 1, 2, 1)

b. V = M22; u =

[
1 0
0 1

]
, v =

[
0 1
1 0

]
,

w =

[
1 1
1 −1

]
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c. V =P; u= x3+x, v= x2+1, w= x3−x2+x+1

d. V = F[0, π]; u = sinx, v = cosx, w = 1—the
constant function

b. Equating entries gives a + c = 0, b + c = 0,
b+ c = 0, a− c = 0. The solution is a = b =
c = 0.

d. If asinx+ bcosy+ c = 0 in F[0, π], then this
must hold for every x in [0, π]. Taking
x = 0, π

2 , and π, respectively, gives b+ c = 0,
a+ c = 0, −b+ c = 0 whence, a = b = c = 0.

Exercise 6.1.7 Simplify each of the following.

a. 3[2(u−2v−w)+3(w−v)]−7(u−3v−w)

b. 4(3u−v+w)−2[(3u−2v)−3(v−w)]
+6(w−u−v)

b. 4w

Exercise 6.1.8 Show that x = v is the only solu-
tion to the equation x+x = 2v in a vector space V .
Cite all axioms used.

Exercise 6.1.9 Show that −0 = 0 in any vector
space. Cite all axioms used.

Exercise 6.1.10 Show that the zero vector 0 is
uniquely determined by the property in axiom A4.

If z+v = v for all v, then z+v = 0+v, so z = 0 by
cancellation.

Exercise 6.1.11 Given a vector v, show that its
negative −v is uniquely determined by the property
in axiom A5.

Exercise 6.1.12

a. Prove (2) of Theorem 6.1.3. [Hint: Axiom S2.]

b. Prove that (−a)v = −(av) in Theorem 6.1.3
by first computing (−a)v+ av. Then do it
using (4) of Theorem 6.1.3 and axiom S4.

c. Prove that a(−v) = −(av) in Theorem 6.1.3
in two ways, as in part (b).

b. (−a)v + av = (−a + a)v = 0v = 0 by Theo-
rem 6.1.3. Because also −(av)+ av = 0 (by
the definition of −(av) in axiom A5), this
means that (−a)v = −(av) by cancellation.
Alternatively, use Theorem 6.1.3(4) to give
(−a)v = [(−1)a]v = (−1)(av) =−(av).

Exercise 6.1.13 Let v, v1, . . . , vn denote vec-
tors in a vector space V and let a, a1, . . . , an denote
numbers. Use induction on n to prove each of the
following.

a. a(v1 +v2 + · · ·+vn) = av1 +av2 + · · ·+avn

b. (a1 +a2 + · · ·+an)v = a1v+a2v+ · · ·+anv

b. The case n = 1 is clear, and n = 2 is ax-
iom S3. If n > 2, then (a1 + a2 + · · ·+ an)v =
[a1 +(a2 + · · ·+an)]v = a1v+(a2 + · · ·+an)v =
a1v+(a2v+ · · ·+anv) using the induction hy-
pothesis; so it holds for all n.

Exercise 6.1.14 Verify axioms A2—A5 and
S2—S5 for the space F[a, b] of functions on [a, b]
(Example 6.1.7).

Exercise 6.1.15 Prove each of the following for
vectors u and v and scalars a and b.

a. If av = 0, then a = 0 or v = 0.

b. If av = bv and v 6= 0, then a = b.

c. If av = aw and a 6= 0, then v = w.

c. If av= aw, then v= 1v=(a−1a)v= a−1(av)=
a−1(aw) = (a−1a)w = 1w = w.
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Exercise 6.1.16 By calculating (1+ 1)(v+w) in
two ways (using axioms S2 and S3), show that axiom
A2 follows from the other axioms.

Exercise 6.1.17 Let V be a vector space, and de-
fine V n to be the set of all n-tuples (v1, v2, . . . , vn)
of n vectors vi, each belonging to V . Define addition
and scalar multiplication in V n as follows:

(u1, u2, . . . , un)+(v1, v2, . . . , vn)

= (u1 +v1, u2 +v2, . . . , un +vn)

a(v1, v2, . . . , vn) = (av1, av2, . . . , avn)

Show that V n is a vector space.

Exercise 6.1.18 Let V n be the vector space of
n-tuples from the preceding exercise, written as
columns. If A is an m× n matrix, and X is in V n,
define AX in V m by matrix multiplication. More pre-
cisely, if

A = [ai j] and X =

 v1
...

vn

 , let AX =

 u1
...

un



where ui = ai1v1 +ai2v2 + · · ·+ainvn for each i.
Prove that:

a. B(AX) = (BA)X

b. (A+A1)X = AX +A1X

c. A(X +X1) = AX +AX1

d. (kA)X = k(AX) = A(kX) if k is any number

e. IX = X if I is the n×n identity matrix

f. Let E be an elementary matrix obtained by
performing a row operation on the rows of In

(see Section 2.5). Show that EX is the column
resulting from performing that same row op-
eration on the vectors (call them rows) of X .
[Hint: Lemma 2.5.1.]
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6.2 Subspaces and Spanning Sets

Chapter 5 is essentially about the subspaces of Rn. We now extend this notion.

Definition 6.2 Subspaces of a Vector Space

If V is a vector space, a nonempty subset U ⊆V is called a subspace of V if U is itself a
vector space using the addition and scalar multiplication of V .

Subspaces of Rn (as defined in Section 5.1) are subspaces in the present sense by Example 6.1.3.
Moreover, the defining properties for a subspace of Rn actually characterize subspaces in general.
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Theorem 6.2.1: Subspace Test

A subset U of a vector space is a subspace of V if and only if it satisfies the following three
conditions:

1. 0 lies in U where 0 is the zero vector of V .

2. If u1 and u2 are in U , then u1 +u2 is also in U .

3. If u is in U , then au is also in U for each scalar a.

Proof. If U is a subspace of V , then (2) and (3) hold by axioms A1 and S1 respectively, applied
to the vector space U . Since U is nonempty (it is a vector space), choose u in U . Then (1) holds
because 0 = 0u is in U by (3) and Theorem 6.1.3.

Conversely, if (1), (2), and (3) hold, then axioms A1 and S1 hold because of (2) and (3), and
axioms A2, A3, S2, S3, S4, and S5 hold in U because they hold in V . Axiom A4 holds because the
zero vector 0 of V is actually in U by (1), and so serves as the zero of U . Finally, given u in U ,
then its negative −u in V is again in U by (3) because −u = (−1)u (again using Theorem 6.1.3).
Hence −u serves as the negative of u in U .

Note that the proof of Theorem 6.2.1 shows that if U is a subspace of V , then U and V share the
same zero vector, and that the negative of a vector in the space U is the same as its negative in V .

Example 6.2.1

If V is any vector space, show that {0} and V are subspaces of V .

Solution. U =V clearly satisfies the conditions of the subspace test. As to U = {0}, it
satisfies the conditions because 0+0 = 0 and a0 = 0 for all a in R.

The vector space {0} is called the zero subspace of V .

Example 6.2.2

Let v be a vector in a vector space V . Show that the set

Rv = {av | a in R}

of all scalar multiples of v is a subspace of V .

Solution. Because 0 = 0v, it is clear that 0 lies in Rv. Given two vectors av and a1v in
Rv, their sum av+a1v = (a+a1)v is also a scalar multiple of v and so lies in Rv. Hence
Rv is closed under addition. Finally, given av, r(av) = (ra)v lies in Rv for all r ∈ R, so Rv
is closed under scalar multiplication. Hence the subspace test applies.

In particular, given d 6= 0 in R3, Rd is the line through the origin with direction vector d.
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The space Rv in Example 6.2.2 is described by giving the form of each vector in Rv. The next
example describes a subset U of the space Mnn by giving a condition that each matrix of U must
satisfy.

Example 6.2.3

Let A be a fixed matrix in Mnn. Show that U = {X in Mnn | AX = XA} is a subspace of Mnn.

Solution. If 0 is the n×n zero matrix, then A0 = 0A, so 0 satisfies the condition for
membership in U . Next suppose that X and X1 lie in U so that AX = XA and AX1 = X1A.
Then

A(X +X1) = AX +AX1 = XA+X1A+(X +X1)A
A(aX) = a(AX) = a(XA) = (aX)A

for all a in R, so both X +X1 and aX lie in U . Hence U is a subspace of Mnn.

Suppose p(x) is a polynomial and a is a number. Then the number p(a) obtained by replacing
x by a in the expression for p(x) is called the evaluation of p(x) at a. For example, if p(x) =
5−6x+2x2, then the evaluation of p(x) at a = 2 is p(2) = 5−12+8 = 1. If p(a) = 0, the number
a is called a root of p(x).

Example 6.2.4

Consider the set U of all polynomials in P that have 3 as a root:

U = {p(x) ∈ P | p(3) = 0}

Show that U is a subspace of P.

Solution. Clearly, the zero polynomial lies in U . Now let p(x) and q(x) lie in U so p(3) = 0
and q(3) = 0. We have (p+q)(x) = p(x)+q(x) for all x, so
(p+q)(3) = p(3)+q(3) = 0+0 = 0, and U is closed under addition. The verification that U
is closed under scalar multiplication is similar.

Recall that the space Pn consists of all polynomials of the form

a0 +a1x+a2x2 + · · ·+anxn

where a0, a1, a2, . . . , an are real numbers, and so is closed under the addition and scalar mul-
tiplication in P. Moreover, the zero polynomial is included in Pn. Thus the subspace test gives
Example 6.2.5.

Example 6.2.5

Pn is a subspace of P for each n ≥ 0.
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The next example involves the notion of the derivative f ′ of a function f . (If the reader is not
familiar with calculus, this example may be omitted.) A function f defined on the interval [a, b] is
called differentiable if the derivative f ′(r) exists at every r in [a, b].

Example 6.2.6

Show that the subset D[a, b] of all differentiable functions on [a, b] is a subspace of the
vector space F[a, b] of all functions on [a, b].

Solution. The derivative of any constant function is the constant function 0; in particular,
0 itself is differentiable and so lies in D[a, b]. If f and g both lie in D[a, b] (so that f ′ and
g′ exist), then it is a theorem of calculus that f +g and r f are both differentiable for any
r ∈ R. In fact, ( f +g)′ = f ′+g′ and (r f )′ = r f ′, so both lie in D[a, b]. This shows that
D[a, b] is a subspace of F[a, b].

Linear Combinations and Spanning Sets

Definition 6.3 Linear Combinations and Spanning

Let {v1, v2, . . . , vn} be a set of vectors in a vector space V . As in Rn, a vector v is called a
linear combination of the vectors v1, v2, . . . , vn if it can be expressed in the form

v = a1v1 +a2v2 + · · ·+anvn

where a1, a2, . . . , an are scalars, called the coefficients of v1, v2, . . . , vn. The set of all
linear combinations of these vectors is called their span, and is denoted by

span{v1, v2, . . . , vn}= {a1v1 +a2v2 + · · ·+anvn | ai in R}

If it happens that V = span{v1, v2, . . . , vn}, these vectors are called a spanning set for V . For
example, the span of two vectors v and w is the set

span{v, w}= {sv+ tw | s and t in R}

of all sums of scalar multiples of these vectors.

Example 6.2.7

Consider the vectors p1 = 1+ x+4x2 and p2 = 1+5x+ x2 in P2. Determine whether p1 and
p2 lie in span{1+2x− x2, 3+5x+2x2}.

Solution. For p1, we want to determine if s and t exist such that

p1 = s(1+2x− x2)+ t(3+5x+2x2)
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Equating coefficients of powers of x (where x0 = 1) gives

1 = s+3t, 1 = 2s+5t, and 4 =−s+2t

These equations have the solution s =−2 and t = 1, so p1 is indeed in
span{1+2x− x2, 3+5x+2x2}.
Turning to p2 = 1+5x+ x2, we are looking for s and t such that

p2 = s(1+2x− x2)+ t(3+5x+2x2)

Again equating coefficients of powers of x gives equations 1 = s+3t, 5 = 2s+5t, and
1 =−s+2t. But in this case there is no solution, so p2 is not in
span{1+2x− x2, 3+5x+2x2}.

We saw in Example 5.1.6 that Rm = span{e1, e2, . . . , em} where the vectors e1, e2, . . . , em are
the columns of the m×m identity matrix. Of course Rm = Mm1 is the set of all m×1 matrices, and
there is an analogous spanning set for each space Mmn. For example, each 2× 2 matrix has the
form [

a b
c d

]
= a

[
1 0
0 0

]
+b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
+d

[
0 0
0 1

]
so

M22 = span
{[

1 0
0 0

]
,
[

0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
Similarly, we obtain

Example 6.2.8

Mmn is the span of the set of all m×n matrices with exactly one entry equal to 1, and all
other entries zero.

The fact that every polynomial in Pn has the form a0 +a1x+a2x2 + · · ·+anxn where each ai is
in R shows that

Example 6.2.9

Pn = span{1, x, x2, . . . , xn}.

In Example 6.2.2 we saw that span{v} = {av | a in R} = Rv is a subspace for any vector v in a
vector space V . More generally, the span of any set of vectors is a subspace. In fact, the proof of
Theorem 5.1.1 goes through to prove:

Theorem 6.2.2
Let U = span{v1, v2, . . . , vn} in a vector space V . Then:

1. U is a subspace of V containing each of v1, v2, . . . , vn.
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2. U is the “smallest” subspace containing these vectors in the sense that any subspace
that contains each of v1, v2, . . . , vn must contain U .

Here is how condition 2 in Theorem 6.2.2 is used. Given vectors v1, . . . , vk in a vector space V
and a subspace U ⊆V , then:

span{v1, . . . , vn} ⊆U ⇔ each vi ∈U

The following examples illustrate this.

Example 6.2.10

Show that P3 = span{x2 + x3, x, 2x2 +1, 3}.

Solution. Write U = span{x2 + x3, x, 2x2 +1, 3}. Then U ⊆ P3, and we use the fact that
P3 = span{1, x, x2, x3} to show that P3 ⊆U . In fact, x and 1 = 1

3 ·3 clearly lie in U . But
then successively,

x2 = 1
2 [(2x2 +1)−1] and x3 = (x2 + x3)− x2

also lie in U . Hence P3 ⊆U by Theorem 6.2.2.

Example 6.2.11

Let u and v be two vectors in a vector space V . Show that

span{u, v}= span{u+2v, u−v}

Solution. We have span{u+2v, u−v} ⊆ span{u, v} by Theorem 6.2.2 because both
u+2v and u−v lie in span{u, v}. On the other hand,

u = 1
3(u+2v)+ 2

3(u−v) and v = 1
3(u+2v)− 1

3(u−v)

so span{u, v} ⊆ span{u+2v, u−v}, again by Theorem 6.2.2.

Exercises for 6.2

Exercise 6.2.1 Which of the following are sub-
spaces of P3? Support your answer.

a. U = { f (x) | f (x) ∈ P3, f (2) = 1}

b. U = {xg(x) | g(x) ∈ P2}

c. U = {xg(x) | g(x) ∈ P3}

d. U = {xg(x)+(1− x)h(x) | g(x) and h(x) ∈ P2}
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e. U = The set of all polynomials in P3 with con-
stant term 0

f. U = { f (x) | f (x) ∈ P3, deg f (x) = 3}

b. Yes

d. Yes

f. No; not closed under addition or scalar multi-
plication, and 0 is not in the set.

Exercise 6.2.2 Which of the following are sub-
spaces of M22? Support your answer.

a. U =

{[
a b
0 c

]∣∣∣∣ a, b, and c in R
}

b. U =

{[
a b
c d

]∣∣∣∣ a+b = c+d; a, b, c, d in R
}

c. U = {A | A ∈ M22, A = AT}

d. U = {A | A ∈ M22, AB = 0}, B a fixed 2 × 2
matrix

e. U = {A | A ∈ M22, A2 = A}

f. U = {A | A ∈ M22, A is not invertible}

g. U = {A | A ∈ M22, BAC =CAB}, B and C fixed
2×2 matrices

b. Yes.

d. Yes.

f. No; not closed under addition.

Exercise 6.2.3 Which of the following are sub-
spaces of F[0, 1]? Support your answer.

a. U = { f | f (0) = 0}

b. U = { f | f (0) = 1}

c. U = { f | f (0) = f (1)}

d. U = { f | f (x)≥ 0 for all x in [0, 1]}

e. U = { f | f (x) = f (y) for all x and y in [0, 1]}

f. U = { f | f (x+ y) = f (x)+ f (y) for all
x and y in [0, 1]}

g. U = { f | f is integrable and
∫ 1

0 f (x)dx = 0}

b. No; not closed under addition.

d. No; not closed under scalar multiplication.

f. Yes.

Exercise 6.2.4 Let A be an m× n matrix. For
which columns b in Rm is U = {x | x ∈ Rn, Ax = b}
a subspace of Rn? Support your answer.

Exercise 6.2.5 Let x be a vector in Rn (written
as a column), and define U = {Ax | A ∈ Mmn}.

a. Show that U is a subspace of Rm.

b. Show that U = Rm if x 6= 0.

b. If entry k of x is xk 6= 0, and if y is in Rn, then
y= Ax where the column of A is x−1

k y, and the
other columns are zero.

Exercise 6.2.6 Write each of the following as a
linear combination of x+1, x2 + x, and x2 +2.

x2 +3x+2a) 2x2 −3x+1b)
x2 +1c) xd)

b. −3(x+1)+0(x2 + x)+2(x2 +2)

d. 2
3(x+1)+ 1

3(x
2 + x)− 1

3(x
2 +2)

Exercise 6.2.7 Determine whether v lies in
span{u, w} in each case.

a. v = 3x2 −2x−1; u = x2 +1, w = x+2

b. v = x; u = x2 +1, w = x+2
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c. v=

[
1 3

−1 1

]
; u=

[
1 −1
2 1

]
, w=

[
2 1
1 0

]

d. v=

[
1 −4
5 3

]
; u=

[
1 −1
2 1

]
, w=

[
2 1
1 0

]

b. No.

d. Yes; v = 3u−w.

Exercise 6.2.8 Which of the following functions
lie in span{cos2 x, sin2 x}? (Work in F[0, π].)

cos2xa) 1b)
x2c) 1+ x2d)

b. Yes; 1 = cos2 x+ sin2 x

d. No. If 1+ x2 = acos2 x+ bsin2 x, then taking
x = 0 and x = π gives a = 1 and a = 1+π2.

Exercise 6.2.9

a. Show that R3 is spanned by
{(1, 0, 1), (1, 1, 0), (0, 1, 1)}.

b. Show that P2 is spanned by {1+2x2, 3x, 1+
x}.

c. Show that M22 is spanned by{[
1 0
0 0

]
,
[

1 0
0 1

]
,
[

0 1
1 0

]
,
[

1 1
0 1

]}
.

b. Because P2 = span{1, x, x2}, it suffices to
show that {1, x, x2}⊆ span{1+2x2, 3x, 1+x}.
But x = 1

3(3x);1 = (1+ x)− x and x2 = 1
2 [(1+

2x2)−1].

Exercise 6.2.10 If X and Y are two sets of vectors
in a vector space V , and if X ⊆ Y , show that
span X ⊆ span Y .

Exercise 6.2.11 Let u, v, and w denote vectors
in a vector space V . Show that:

a. span{u, v, w}= span{u+v, u+w, v+w}

b. span{u, v, w}= span{u−v, u+w, w}

b. u = (u+w)−w, v =−(u−v)+(u+w)−w,
and w = w

Exercise 6.2.12 Show that

span{v1, v2, . . . , vn, 0}= span{v1, v2, . . . , vn}

holds for any set of vectors {v1, v2, . . . , vn}.

Exercise 6.2.13 If X and Y are nonempty subsets
of a vector space V such that span X = span Y = V ,
must there be a vector common to both X and Y?
Justify your answer.

Exercise 6.2.14 Is it possible that
{(1, 2, 0), (1, 1, 1)} can span the subspace U =
{(a, b, 0) | a and b in R}?
No.

Exercise 6.2.15 Describe span{0}.

Exercise 6.2.16 Let v denote any vector in a vec-
tor space V . Show that span{v}= span{av} for any
a 6= 0.

Exercise 6.2.17 Determine all subspaces
of Rv where v 6= 0 in some vector space V .

b. Yes.

Exercise 6.2.18 Suppose V = span{v1, v2, . . . , vn}.
If u = a1v1 +a2v2 + · · ·+anvn where the ai are in R
and a1 6= 0, show that V = span{u, v2, . . . , vn}.

v1 = 1
a1

u − a2
a1

v2 − ·· · − an
a1

vn, so V ⊆
span{u, v2, . . . , vn}

Exercise 6.2.19 If Mnn = span{A1, A2, . . . , Ak},
show that Mnn = span{AT

1 , AT
2 , . . . , AT

k }.

Exercise 6.2.20 If Pn = span{p1(x), p2(x), . . . , pk(x)}
and a is in R, show that pi(a) 6= 0 for some i.

Exercise 6.2.21 Let U be a subspace of a vector
space V .

a. If au is in U where a 6= 0, show that u is in U .
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b. If u and u+v are in U , show that v is in U .

b. v = (u+v)−u is in U .

Exercise 6.2.22 Let U be a nonempty subset of
a vector space V . Show that U is a subspace of V if
and only if u1 +au2 lies in U for all u1 and u2 in U
and all a in R.
Given the condition and u ∈U , 0 = u+(−1)u ∈U .
The converse holds by the subspace test.

Exercise 6.2.23 Let U = {p(x) in P | p(3) = 0} be
the set in Example 6.2.4. Use the factor theorem (see
Section ??) to show that U consists of multiples of
x−3; that is, show that U = {(x−3)q(x) | q(x) ∈ P}.
Use this to show that U is a subspace of P.

Exercise 6.2.24 Let A1, A2, . . . , Am denote n× n
matrices. If 0 6= y ∈Rn and A1y = A2y = · · ·= Amy =
0, show that {A1, A2, . . . , Am} cannot span Mnn.

Exercise 6.2.25 Let {v1, v2, . . . , vn} and
{u1, u2, . . . , un} be sets of vectors in a vector space,
and let

X =

 v1
...

vn

 Y =

 u1
...

un


as in Exercise 6.1.18.

a. Show that span{v1, . . . , vn} ⊆
span{u1, . . . , un} if and only if AY = X for
some n×n matrix A.

b. If X = AY where A is invertible, show that
span{v1, . . . , vn}= span{u1, . . . , un}.

Exercise 6.2.26 If U and W are subspaces of a
vector space V , let U ∪W = {v | v is in U or v is in
W}. Show that U ∪W is a subspace if and only if
U ⊆W or W ⊆U .

Exercise 6.2.27 Show that P cannot be spanned
by a finite set of polynomials.
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6.3 Linear Independence and Dimension

Definition 6.4 Linear Independence and Dependence

As in Rn, a set of vectors {v1, v2, . . . , vn} in a vector space V is called linearly
independent (or simply independent) if it satisfies the following condition:

If s1v1 + s2v2 + · · ·+ snvn = 0, then s1 = s2 = · · ·= sn = 0.

A set of vectors that is not linearly independent is said to be linearly dependent (or
simply dependent).

The trivial linear combination of the vectors v1, v2, . . . , vn is the one with every coefficient
zero:

0v1 +0v2 + · · ·+0vn

This is obviously one way of expressing 0 as a linear combination of the vectors v1, v2, . . . , vn, and
they are linearly independent when it is the only way.

Example 6.3.1

Show that {1+ x, 3x+ x2, 2+ x− x2} is independent in P2.

Solution. Suppose a linear combination of these polynomials vanishes.

s1(1+ x)+ s2(3x+ x2)+ s3(2+ x− x2) = 0

Equating the coefficients of 1, x, and x2 gives a set of linear equations.

s1 + + 2s3 = 0
s1 + 3s2 + s3 = 0

s2 − s3 = 0

The only solution is s1 = s2 = s3 = 0.

Example 6.3.2

Show that {sinx, cosx} is independent in the vector space F[0, 2π] of functions defined on
the interval [0, 2π].

Solution. Suppose that a linear combination of these functions vanishes.

s1(sinx)+ s2(cosx) = 0

This must hold for all values of x in [0, 2π] (by the definition of equality in F[0, 2π]).
Taking x = 0 yields s2 = 0 (because sin0 = 0 and cos0 = 1). Similarly, s1 = 0 follows from
taking x = π

2 (because sin π

2 = 1 and cos π

2 = 0).
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Example 6.3.3

Suppose that {u, v} is an independent set in a vector space V . Show that {u+2v, u−3v}
is also independent.

Solution. Suppose a linear combination of u+2v and u−3v vanishes:

s(u+2v)+ t(u−3v) = 0

We must deduce that s = t = 0. Collecting terms involving u and v gives

(s+ t)u+(2s−3t)v = 0

Because {u, v} is independent, this yields linear equations s+ t = 0 and 2s−3t = 0. The
only solution is s = t = 0.

Example 6.3.4

Show that any set of polynomials of distinct degrees is independent.

Solution. Let p1, p2, . . . , pm be polynomials where deg (pi) = di. By relabelling if
necessary, we may assume that d1 > d2 > · · ·> dm. Suppose that a linear combination
vanishes:

t1 p1 + t2 p2 + · · ·+ tm pm = 0

where each ti is in R. As deg (p1) = d1, let axd1 be the term in p1 of highest degree, where
a 6= 0. Since d1 > d2 > · · ·> dm, it follows that t1axd1 is the only term of degree d1 in the
linear combination t1 p1 + t2 p2 + · · ·+ tm pm = 0. This means that t1axd1 = 0, whence t1a = 0,
hence t1 = 0 (because a 6= 0). But then t2 p2 + · · ·+ tm pm = 0 so we can repeat the argument
to show that t2 = 0. Continuing, we obtain ti = 0 for each i, as desired.

Example 6.3.5

Suppose that A is an n×n matrix such that Ak = 0 but Ak−1 6= 0. Show that
B = {I, A, A2, . . . , Ak−1} is independent in Mnn.

Solution. Suppose r0I + r1A+ r2A2 + · · ·+ rk−1Ak−1 = 0. Multiply by Ak−1:

r0Ak−1 + r1Ak + r2Ak+1 + · · ·+ rk−1A2k−2 = 0

Since Ak = 0, all the higher powers are zero, so this becomes r0Ak−1 = 0. But Ak−1 6= 0, so
r0 = 0, and we have r1A1 + r2A2 + · · ·+ rk−1Ak−1 = 0. Now multiply by Ak−2 to conclude that
r1 = 0. Continuing, we obtain ri = 0 for each i, so B is independent.

The next example collects several useful properties of independence for reference.
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Example 6.3.6

Let V denote a vector space.

1. If v 6= 0 in V , then {v} is an independent set.

2. No independent set of vectors in V can contain the zero vector.

Solution.

1. Let tv = 0, t in R. If t 6= 0, then v = 1v = 1
t (tv) =

1
t 0 = 0, contrary to assumption. So

t = 0.

2. If {v1, v2, . . . , vk} is independent and (say) v2 = 0, then 0v1 +1v2 + · · ·+0vk = 0 is a
nontrivial linear combination that vanishes, contrary to the independence of
{v1, v2, . . . , vk}.

A set of vectors is independent if 0 is a linear combination in a unique way. The following
theorem shows that every linear combination of these vectors has uniquely determined coefficients,
and so extends Theorem 5.2.1.

Theorem 6.3.1
Let {v1, v2, . . . , vn} be a linearly independent set of vectors in a vector space V . If a vector
v has two (ostensibly different) representations

v = s1v1 + s2v2 + · · · + snvn
v = t1v1 + t2v2 + · · · + tnvn

as linear combinations of these vectors, then s1 = t1, s2 = t2, . . . , sn = tn. In other words,
every vector in V can be written in a unique way as a linear combination of the vi.

Proof. Subtracting the equations given in the theorem gives

(s1 − t1)v1 +(s2 − t2)v2 + · · ·+(sn − tn)vn = 0

The independence of {v1, v2, . . . , vn} gives si − ti = 0 for each i, as required.

The following theorem extends (and proves) Theorem 5.2.4, and is one of the most useful results
in linear algebra.

Theorem 6.3.2: Fundamental Theorem
can be spanned by n vectors. If any set of m vectors in V is linearly independent, then m ≤ n.

Proof. Let V = span{v1, v2, . . . , vn}, and suppose that {u1, u2, . . . , um} is an independent set in
V . Then u1 = a1v1+a2v2+ · · ·+anvn where each ai is in R. As u1 6= 0 (Example 6.3.6), not all of the
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ai are zero, say a1 6= 0 (after relabelling the vi). Then V = span{u1, v2, v3, . . . , vn} as the reader
can verify. Hence, write u2 = b1u1+c2v2+c3v3+ · · ·+cnvn. Then some ci 6= 0 because {u1, u2} is
independent; so, as before, V = span{u1, u2, v3, . . . , vn}, again after possible relabelling of the vi.
If m > n, this procedure continues until all the vectors vi are replaced by the vectors u1, u2, . . . , un.
In particular, V = span{u1, u2, . . . , un}. But then un+1 is a linear combination of u1, u2, . . . , un
contrary to the independence of the ui. Hence, the assumption m > n cannot be valid, so m ≤ n and
the theorem is proved.

If V = span{v1, v2, . . . , vn}, and if {u1, u2, . . . , um} is an independent set in V , the above
proof shows not only that m ≤ n but also that m of the (spanning) vectors v1, v2, . . . , vn can be
replaced by the (independent) vectors u1, u2, . . . , um and the resulting set will still span V . In this
form the result is called the Steinitz Exchange Lemma.
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Definition 6.5 Basis of a Vector Space

As in Rn, a set {e1, e2, . . . , en} of vectors in a vector space V is called a basis of V if it
satisfies the following two conditions:

1. {e1, e2, . . . , en} is linearly independent

2. V = span{e1, e2, . . . , en}

Thus if a set of vectors {e1, e2, . . . , en} is a basis, then every vector in V can be written as a linear
combination of these vectors in a unique way (Theorem 6.3.1). But even more is true: Any two
(finite) bases of V contain the same number of vectors.

Theorem 6.3.3: Invariance Theorem
Let {e1, e2, . . . , en} and {f1, f2, . . . , fm} be two bases of a vector space V . Then n = m.

Proof. Because V = span{e1, e2, . . . , en} and {f1, f2, . . . , fm} is independent, it follows from
Theorem 6.3.2 that m ≤ n. Similarly n ≤ m, so n = m, as asserted.

Theorem 6.3.3 guarantees that no matter which basis of V is chosen it contains the same number
of vectors as any other basis. Hence there is no ambiguity about the following definition.

Definition 6.6 Dimension of a Vector Space

If {e1, e2, . . . , en} is a basis of the nonzero vector space V , the number n of vectors in the
basis is called the dimension of V , and we write

dim V = n

The zero vector space {0} is defined to have dimension 0:

dim{0}= 0

In our discussion to this point we have always assumed that a basis is nonempty and hence that the
dimension of the space is at least 1. However, the zero space {0} has no basis (by Example 6.3.6)
so our insistence that dim{0}= 0 amounts to saying that the empty set of vectors is a basis of {0}.
Thus the statement that “the dimension of a vector space is the number of vectors in any basis”
holds even for the zero space.

We saw in Example 5.2.9 that dim (Rn)= n and, if e j denotes column j of In, that {e1, e2, . . . , en}
is a basis (called the standard basis). In Example 6.3.7 below, similar considerations apply to the
space Mmn of all m×n matrices; the verifications are left to the reader.



6.3. Linear Independence and Dimension 347

Example 6.3.7

The space Mmn has dimension mn, and one basis consists of all m×n matrices with exactly
one entry equal to 1 and all other entries equal to 0. We call this the standard basis of
Mmn.

Example 6.3.8

Show that dim Pn = n+1 and that {1, x, x2, . . . , xn} is a basis, called the standard basis
of Pn.

Solution. Each polynomial p(x) = a0 +a1x+ · · ·+anxn in Pn is clearly a linear combination
of 1, x, . . . , xn, so Pn = span{1, x, . . . , xn}. However, if a linear combination of these
vectors vanishes, a01+a1x+ · · ·+anxn = 0, then a0 = a1 = · · ·= an = 0 because x is an
indeterminate. So {1, x, . . . , xn} is linearly independent and hence is a basis containing
n+1 vectors. Thus, dim (Pn) = n+1.

Example 6.3.9

If v 6= 0 is any nonzero vector in a vector space V , show that span{v}=Rv has dimension 1.

Solution. {v} clearly spans Rv, and it is linearly independent by Example 6.3.6. Hence
{v} is a basis of Rv, and so dim Rv = 1.

Example 6.3.10

Let A =

[
1 1
0 0

]
and consider the subspace

U = {X in M22 | AX = XA}

of M22. Show that dim U = 2 and find a basis of U .

Solution. It was shown in Example 6.2.3 that U is a subspace for any choice of the matrix

A. In the present case, if X =

[
x y
z w

]
is in U , the condition AX = XA gives z = 0 and

x = y+w. Hence each matrix X in U can be written

X =

[
y+w y

0 w

]
= y

[
1 1
0 0

]
+w

[
1 0
0 1

]

so U = span B where B =

{[
1 1
0 0

]
,
[

1 0
0 1

]}
. Moreover, the set B is linearly

independent (verify this), so it is a basis of U and dim U = 2.
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Example 6.3.11

Show that the set V of all symmetric 2×2 matrices is a vector space, and find the
dimension of V .

Solution. A matrix A is symmetric if AT = A. If A and B lie in V , then

(A+B)T = AT +BT = A+B and (kA)T = kAT = kA

using Theorem 2.1.2. Hence A+B and kA are also symmetric. As the 2×2 zero matrix is
also in V , this shows that V is a vector space (being a subspace of M22). Now a matrix A is
symmetric when entries directly across the main diagonal are equal, so each 2×2 symmetric
matrix has the form [

a c
c b

]
= a

[
1 0
0 0

]
+b

[
0 0
0 1

]
+ c

[
0 1
1 0

]

Hence the set B =

{[
1 0
0 0

]
,
[

0 0
0 1

]
,

[
0 1
1 0

]}
spans V , and the reader can verify that

B is linearly independent. Thus B is a basis of V , so dim V = 3.

It is frequently convenient to alter a basis by multiplying each basis vector by a nonzero scalar.
The next example shows that this always produces another basis. The proof is left as Exercise
6.3.22.

Example 6.3.12

Let B = {v1, v2, . . . , vn} be nonzero vectors in a vector space V . Given nonzero scalars
a1, a2, . . . , an, write D = {a1v1, a2v2, . . . , anvn}. If B is independent or spans V , the same
is true of D. In particular, if B is a basis of V , so also is D.

Exercises for 6.3

Exercise 6.3.1 Show that each of the following
sets of vectors is independent.

a. {1+ x, 1− x, x+ x2} in P2

b. {x2, x+1, 1− x− x2} in P2

c.{[
1 1
0 0

]
,
[

1 0
1 0

]
,
[

0 0
1 −1

]
,

[
0 1
0 1

]}
in M22

d.{[
1 1
1 0

]
,
[

0 1
1 1

]
,
[

1 0
1 1

]
,

[
1 1
0 1

]}
in M22

b. If ax2+b(x+1)+c(1−x−x2) = 0, then a+c =
0, b− c = 0, b+ c = 0, so a = b = c = 0.
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d. If a
[

1 1
1 0

]
+ b

[
0 1
1 1

]
+ c

[
1 0
1 1

]
+

d
[

1 1
0 1

]
=

[
0 0
0 0

]
, then a + c + d = 0,

a+ b+ d = 0, a+ b+ c = 0, and b+ c+ d = 0,
so a = b = c = d = 0.

Exercise 6.3.2 Which of the following subsets of
V are independent?

a. V = P2; {x2 +1, x+1, x}

b. V = P2; {x2 − x+3, 2x2 + x+5, x2 +5x+1}

c. V = M22;
{[

1 1
0 1

]
,
[

1 0
1 1

]
,
[

1 0
0 1

]}
d. V = M22;{[
−1 0

0 −1

]
,
[

1 −1
−1 1

]
,
[

1 1
1 1

]
,
[

0 −1
−1 0

]}
e. V = F[1, 2];

{1
x , 1

x2 , 1
x3

}
f. V = F[0, 1];

{
1

x2+x−6 , 1
x2−5x+6 , 1

x2−9

}

b. 3(x2 − x+3)−2(2x2 + x+5)+(x2 +5x+1) = 0

d. 2
[
−1 0

0 −1

]
+

[
1 −1

−1 1

]
+

[
1 1
1 1

]
=[

0 0
0 0

]
f. 5

x2+x−6 +
1

x2−5x+6 −
6

x2−9 = 0

Exercise 6.3.3 Which of the following are inde-
pendent in F[0, 2π]?

a. {sin2 x, cos2 x}

b. {1, sin2 x, cos2 x}

c. {x, sin2 x, cos2 x}

b. Dependent: 1− sin2 x− cos2 x = 0

Exercise 6.3.4 Find all values of a such that the
following are independent in R3.

a. {(1, −1, 0), (a, 1, 0), (0, 2, 3)}

b. {(2, a, 1), (1, 0, 1), (0, 1, 3)}

b. x 6=−1
3

Exercise 6.3.5 Show that the following are bases
of the space V indicated.

a. {(1, 1, 0), (1, 0, 1), (0, 1, 1)}; V = R3

b. {(−1, 1, 1), (1, −1, 1), (1, 1, −1)}; V = R3

c.
{[

1 0
0 1

]
,
[

0 1
1 0

]
,
[

1 1
0 1

]
,
[

1 0
0 0

]}
;

V = M22

d. {1+ x, x+ x2, x2 + x3, x3}; V = P3

b. If r(−1, 1, 1) + s(1, −1, 1) + t(1, 1, −1) =
(0, 0, 0), then −r + s + t = 0, r − s + t = 0,
and r− s− t = 0, and this implies that r = s =
t = 0. This proves independence. To prove
that they span R3, observe that (0, 0, 1) =
1
2 [(−1, 1, 1)+ (1, −1, 1)] so (0, 0, 1) lies in
span{(−1, 1, 1), (1, −1, 1), (1, 1, −1)}. The
proof is similar for (0, 1, 0) and (1, 0, 0).

d. If r(1+x)+s(x+x2)+ t(x2+x3)+ux3 = 0, then
r = 0, r + s = 0, s + t = 0, and t + u = 0,
so r = s = t = u = 0. This proves indepen-
dence. To show that they span P3, observe
that x2 = (x2 + x3)− x3, x = (x+ x2)− x2, and
1 = (1+ x)− x, so {1, x, x2, x3} ⊆ span{1+
x, x+ x2, x2 + x3, x3}.

Exercise 6.3.6 Exhibit a basis and calculate the
dimension of each of the following subspaces of P2.

a. {a(1+ x)+b(x+ x2) | a and b in R}

b. {a+b(x+ x2) | a and b in R}

c. {p(x) | p(1) = 0}

d. {p(x) | p(x) = p(−x)}
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b. {1, x+ x2}; dimension = 2

d. {1, x2}; dimension = 2

Exercise 6.3.7 Exhibit a basis and calculate the
dimension of each of the following subspaces of M22.

a. {A | AT =−A}

b.
{

A
∣∣∣∣ A

[
1 1

−1 0

]
=

[
1 1

−1 0

]
A
}

c.
{

A
∣∣∣∣ A

[
1 0

−1 0

]
=

[
0 0
0 0

]}

d.
{

A
∣∣∣∣ A

[
1 1

−1 0

]
=

[
0 1

−1 1

]
A
}

b.
{[

1 1
−1 0

]
,
[

1 0
0 1

]}
; dimension = 2

d.
{[

1 0
1 1

]
,
[

0 1
−1 0

]}
; dimension = 2

Exercise 6.3.8 Let A =

[
1 1
0 0

]
and define

U = {X | X ∈ M22 and AX = X}.

a. Find a basis of U containing A.

b. Find a basis of U not containing A.

b.
{[

1 0
0 0

]
,
[

0 1
0 0

]}
Exercise 6.3.9 Show that the set C of all complex
numbers is a vector space with the usual operations,
and find its dimension.

Exercise 6.3.10

a. Let V denote the set of all 2×2 matrices with
equal column sums. Show that V is a subspace
of M22, and compute dim V .

b. Repeat part (a) for 3×3 matrices.

c. Repeat part (a) for n×n matrices.

b. dim V = 7

Exercise 6.3.11

a. Let V = {(x2 + x+ 1)p(x) | p(x) in P2}. Show
that V is a subspace of P4 and find dim V .
[Hint: If f (x)g(x) = 0 in P, then f (x) = 0 or
g(x) = 0.]

b. Repeat with V = {(x2 − x)p(x) | p(x) in P3}, a
subset of P5.

c. Generalize.

b. {x2 − x, x(x2 − x), x2(x2 − x), x3(x2 − x)};
dim V = 4

Exercise 6.3.12 In each case, either prove the as-
sertion or give an example showing that it is false.

a. Every set of four nonzero polynomials in P3 is
a basis.

b. P2 has a basis of polynomials f (x) such that
f (0) = 0.

c. P2 has a basis of polynomials f (x) such that
f (0) = 1.

d. Every basis of M22 contains a noninvertible
matrix.

e. No independent subset of M22 contains a ma-
trix A with A2 = 0.

f. If {u, v, w} is independent then, au+ bv+
cw = 0 for some a, b, c.

g. {u, v, w} is independent if au+bv+ cw = 0
for some a, b, c.

h. If {u, v} is independent, so is {u, u+v}.

i. If {u, v} is independent, so is {u, v, u+v}.

j. If {u, v, w} is independent, so is {u, v}.
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k. If {u, v, w} is independent, so is {u+w, v+
w}.

l. If {u, v, w} is independent, so is {u+v+w}.

m. If u 6= 0 and v 6= 0 then {u, v} is dependent
if and only if one is a scalar multiple of the
other.

n. If dim V = n, then no set of more than n vec-
tors can be independent.

o. If dim V = n, then no set of fewer than n vec-
tors can span V .

b. No. Any linear combination f of such polyno-
mials has f (0) = 0.

d. No.{[
1 0
0 1

]
,
[

1 1
0 1

]
,
[

1 0
1 1

]
,
[

0 1
1 1

]}
;

consists of invertible matrices.

f. Yes. 0u+0v+0w= 0 for every set {u, v, w}.

h. Yes. su+ t(u+v) = 0 gives (s+ t)u+ tv = 0,
whence s+ t = 0 = t.

j. Yes. If ru+ sv = 0, then ru+ sv+0w = 0, so
r = 0 = s.

l. Yes. u+v+w 6= 0 because {u, v, w} is inde-
pendent.

n. Yes. If I is independent, then |I| ≤ n by the
fundamental theorem because any basis spans
V .

Exercise 6.3.13 Let A 6= 0 and B 6= 0 be n×n ma-
trices, and assume that A is symmetric and B is skew-
symmetric (that is, BT = −B). Show that {A, B} is
independent.

Exercise 6.3.14 Show that every set of vectors
containing a dependent set is again dependent.

Exercise 6.3.15 Show that every nonempty sub-
set of an independent set of vectors is again indepen-
dent.
If a linear combination of the subset vanishes, it is
a linear combination of the vectors in the larger set

(coefficients outside the subset are zero) so it is triv-
ial.

Exercise 6.3.16 Let f and g be functions on [a, b],
and assume that f (a) = 1 = g(b) and f (b) = 0 = g(a).
Show that { f , g} is independent in F[a, b].

Exercise 6.3.17 Let {A1, A2, . . . , Ak} be indepen-
dent in Mmn, and suppose that U and V are invert-
ible matrices of size m×m and n× n, respectively.
Show that {UA1V , UA2V , . . . , UAkV} is indepen-
dent.

Exercise 6.3.18 Show that {v, w} is independent
if and only if neither v nor w is a scalar multiple of
the other.

Exercise 6.3.19 Assume that {u, v} is indepen-
dent in a vector space V . Write u′ = au+ bv and
v′ = cu+dv, where a, b, c, and d are numbers. Show
that {u′, v′} is independent if and only if the ma-

trix
[

a c
b d

]
is invertible. [Hint: Theorem 2.4.5.]

Because {u, v} is linearly independent, su′+ tv′ = 0

is equivalent to
[

a c
b d

][
s
t

]
=

[
0
0

]
. Now apply

Theorem 2.4.5.

Exercise 6.3.20 If {v1, v2, . . . , vk} is independent
and w is not in span{v1, v2, . . . , vk}, show that:

a. {w, v1, v2, . . . , vk} is independent.

b. {v1 +w, v2 +w, . . . , vk +w} is independent.

Exercise 6.3.21 If {v1, v2, . . . , vk} is indepen-
dent, show that {v1, v1 +v2, . . . , v1 +v2 + · · ·+vk}
is also independent.

Exercise 6.3.22 Prove Example 6.3.12.

Exercise 6.3.23 Let {u, v, w, z} be independent.
Which of the following are dependent?

a. {u−v, v−w, w−u}

b. {u+v, v+w, w+u}

c. {u−v, v−w, w−z, z−u}

d. {u+v, v+w, w+z, z+u}

b. Independent.
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d. Dependent. For example, (u+v)− (v+w)+
(w+z)− (z+u) = 0.

Exercise 6.3.24 Let U and W be subspaces of V
with bases {u1, u2, u3} and {w1, w2} respectively.
If U and W have only the zero vector in common,
show that {u1, u2, u3, w1, w2} is independent.

Exercise 6.3.25 Let {p, q} be independent poly-
nomials. Show that {p, q, pq} is independent if and
only if deg p ≥ 1 and deg q ≥ 1.

Exercise 6.3.26 If z is a complex number, show
that {z, z2} is independent if and only if z is not real.

If z is not real and az+bz2 = 0, then a+bz= 0(z 6= 0).
Hence if b 6= 0, then z = −ab−1 is real. So b = 0,
and so a = 0. Conversely, if z is real, say z = a,
then (−a)z+ 1z2 = 0, contrary to the independence
of {z, z2}.

Exercise 6.3.27 Let B = {A1, A2, . . . , An} ⊆ Mmn,
and write B′ = {AT

1 , AT
2 , . . . , AT

n } ⊆ Mnm. Show that:

a. B is independent if and only if B′ is indepen-
dent.

b. B spans Mmn if and only if B′ spans Mnm.

Exercise 6.3.28 If V =F[a, b] as in Example 6.1.7,
show that the set of constant functions is a subspace
of dimension 1 ( f is constant if there is a number c
such that f (x) = c for all x).

Exercise 6.3.29

a. If U is an invertible n × n matrix and
{A1, A2, . . . , Amn} is a basis of Mmn, show
that {A1U , A2U , . . . , AmnU} is also a basis.

b. Show that part (a) fails if U is not invertible.
[Hint: Theorem 2.4.5.]

b. If Ux = 0, x 6= 0 in Rn, then Rx = 0 where
R 6= 0 is row 1 of U . If B ∈ Mmn has each row
equal to R, then Bx 6= 0. But if B = ∑riAiU ,
then Bx=∑riAiUx=0. So {AiU} cannot span
Mmn.

Exercise 6.3.30 Show that {(a, b), (a1, b1)} is a
basis of R2 if and only if {a+bx, a1 +b1x} is a basis
of P1.

Exercise 6.3.31 Find the dimension of the sub-
space span{1, sin2

θ , cos2θ} of F[0, 2π].

Exercise 6.3.32 Show that F[0, 1] is not finite
dimensional.

Exercise 6.3.33 If U and W are subspaces of V ,
define their intersection U ∩W as follows: U ∩W =
{v | v is in both U and W}

a. Show that U ∩W is a subspace contained in U
and W .

b. Show that U ∩W = {0} if and only if {u, w}
is independent for any nonzero vectors u in U
and w in W .

c. If B and D are bases of U and W , and
if U ∩ W = {0}, show that B ∪ D = {v |
v is in B or D} is independent.

b. If U ∩W = 0 and ru+ sw = 0, then ru =−sw
is in U ∩W , so ru = 0 = sw. Hence r = 0 = s
because u 6= 0 6= w. Conversely, if v 6= 0 lies
in U ∩W , then 1v+ (−1)v = 0, contrary to
hypothesis.

Exercise 6.3.34 If U and W are vector spaces, let
V = {(u, w) | u in U and w in W}.

a. Show that V is a vector space if (u, w) +
(u1, w1) = (u+u1, w+w1) and a(u, w) =
(au, aw).

b. If dim U = m and dim W = n, show that
dim V = m+n.

c. If V1, . . . , Vm are vector spaces, let

V =V1 ×·· ·×Vm

= {(v1, . . . , vm) | vi ∈Vi for each i}

denote the space of n-tuples from the Vi

with componentwise operations (see Exer-
cise 6.1.17). If dim Vi = ni for each i, show
that dim V = n1 + · · ·+nm.

Exercise 6.3.35 Let Dn denote the set of all func-
tions f from the set {1, 2, . . . , n} to R.
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a. Show that Dn is a vector space with pointwise
addition and scalar multiplication.

b. Show that {S1, S2, . . . , Sn} is a basis of Dn

where, for each k = 1, 2, . . . , n, the function
Sk is defined by Sk(k) = 1, whereas Sk( j) = 0 if
j 6= k.

Exercise 6.3.36 A polynomial p(x) is called even
if p(−x) = p(x) and odd if p(−x) = −p(x). Let En

and On denote the sets of even and odd polynomials
in Pn.

a. Show that En is a subspace of Pn and find
dim En.

b. Show that On is a subspace of Pn and find
dim On.

b. dim On =
n
2 if n is even and dim On =

n+1
2 if n

is odd.

Exercise 6.3.37 Let {v1, . . . , vn} be independent
in a vector space V , and let A be an n× n matrix.
Define u1, . . . , un by u1

...
un

= A

 v1
...

vn


(See Exercise 6.1.18.) Show that {u1, . . . , un} is
independent if and only if A is invertible.
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6.4 Finite Dimensional Spaces

Up to this point, we have had no guarantee that an arbitrary vector space has a basis—and hence
no guarantee that one can speak at all of the dimension of V . However, Theorem 6.4.1 will show
that any space that is spanned by a finite set of vectors has a (finite) basis: The proof requires the
following basic lemma, of interest in itself, that gives a way to enlarge a given independent set of
vectors.

Lemma 6.4.1: Independent Lemma

Let {v1, v2, . . . , vk} be an independent set of vectors in a vector space V . If u ∈V but5

u /∈ span{v1, v2, . . . , vk}, then {u, v1, v2, . . . , vk} is also independent.

Proof. Let tu+ t1v1 + t2v2 + · · ·+ tkvk = 0; we must show that all the coefficients are zero. First,
t = 0 because, otherwise, u =− t1

t v1 − t2
t v2 −·· ·− tk

t vk is in span{v1, v2, . . . , vk}, contrary to our
assumption. Hence t = 0. But then t1v1 + t2v2 + · · ·+ tkvk = 0 so the rest of the ti are zero by the
independence of {v1, v2, . . . , vk}. This is what we wanted.

0

u

v1

v2

span{v1 , v2}
x

y

z Note that the converse of Lemma 6.4.1 is also true:
if {u, v1, v2, . . . , vk} is independent, then u is not
in span{v1, v2, . . . , vk}.

As an illustration, suppose that {v1, v2} is inde-
pendent in R3. Then v1 and v2 are not parallel, so
span{v1, v2} is a plane through the origin (shaded
in the diagram). By Lemma 6.4.1, u is not in this
plane if and only if {u, v1, v2} is independent.

Definition 6.7 Finite Dimensional and Infinite Dimensional Vector Spaces

A vector space V is called finite dimensional if it is spanned by a finite set of vectors.
Otherwise, V is called infinite dimensional.

Thus the zero vector space {0} is finite dimensional because {0} is a spanning set.

Lemma 6.4.2
Let V be a finite dimensional vector space. If U is any subspace of V , then any independent
subset of U can be enlarged to a finite basis of U .

Proof. span I =U then I is already a basis of U . If span I 6=U , choose u1 ∈U such that u1 /∈ span I.
Hence the set I∪{u1} is independent by Lemma 6.4.1. If span (I∪{u1}) =U we are done; otherwise
choose u2 ∈ U such that u2 /∈ span (I ∪{u1}). Hence I ∪{u1, u2} is independent, and the process

5If X is a set, we write a ∈ X to indicate that a is an element of the set X . If a is not an element of X , we write
a /∈ X .
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continues. We claim that a basis of U will be reached eventually. Indeed, if no basis of U is ever
reached, the process creates arbitrarily large independent sets in V . But this is impossible by the
fundamental theorem because V is finite dimensional and so is spanned by a finite set of vectors.

Theorem 6.4.1
Let V be a finite dimensional vector space spanned by m vectors.

1. V has a finite basis, and dim V ≤ m.

2. Every independent set of vectors in V can be enlarged to a basis of V by adding
vectors from any fixed basis of V .

3. If U is a subspace of V , then

a. U is finite dimensional and dim U ≤ dim V .
b. If dim U = dim V then U =V .

Proof.

1. If V = {0}, then V has an empty basis and dim V = 0 ≤ m. Otherwise, let v 6= 0 be a vector
in V . Then {v} is independent, so (1) follows from Lemma 6.4.2 with U =V .

2. We refine the proof of Lemma 6.4.2. Fix a basis B of V and let I be an independent subset
of V . If span I =V then I is already a basis of V . If span I 6=V , then B is not contained in I
(because B spans V ). Hence choose b1 ∈ B such that b1 /∈ span I. Hence the set I ∪{b1} is
independent by Lemma 6.4.1. If span (I∪{b1}) =V we are done; otherwise a similar argument
shows that (I ∪{b1, b2}) is independent for some b2 ∈ B. Continue this process. As in the
proof of Lemma 6.4.2, a basis of V will be reached eventually.

3. a. This is clear if U = {0}. Otherwise, let u 6= 0 in U . Then {u} can be enlarged to a finite
basis B of U by Lemma 6.4.2, proving that U is finite dimensional. But B is independent
in V , so dim U ≤ dim V by the fundamental theorem.

b. This is clear if U = {0} because V has a basis; otherwise, it follows from (2).

Theorem 6.4.1 shows that a vector space V is finite dimensional if and only if it has a finite basis
(possibly empty), and that every subspace of a finite dimensional space is again finite dimensional.

Example 6.4.1

Enlarge the independent set D =

{[
1 1
1 0

]
,
[

0 1
1 1

]
,
[

1 0
1 1

]}
to a basis of M22.

Solution. The standard basis of M22 is
{[

1 0
0 0

]
,
[

0 1
0 0

]
,
[

0 0
1 0

]
,
[

0 0
0 1

]}
, so

including one of these in D will produce a basis by Theorem 6.4.1. In fact including any of
these matrices in D produces an independent set (verify), and hence a basis by
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Theorem 6.4.4. Of course these vectors are not the only possibilities, for example, including[
1 1
0 1

]
works as well.

Example 6.4.2

Find a basis of P3 containing the independent set {1+ x, 1+ x2}.

Solution. The standard basis of P3 is {1, x, x2, x3}, so including two of these vectors will
do. If we use 1 and x3, the result is {1, 1+ x, 1+ x2, x3}. This is independent because the
polynomials have distinct degrees (Example 6.3.4), and so is a basis by Theorem 6.4.1. Of
course, including {1, x} or {1, x2} would not work!

Example 6.4.3

Show that the space P of all polynomials is infinite dimensional.

Solution. For each n ≥ 1, P has a subspace Pn of dimension n+1. Suppose P is finite
dimensional, say dim P = m. Then dim Pn ≤ dim P by Theorem 6.4.1, that is n+1 ≤ m.
This is impossible since n is arbitrary, so P must be infinite dimensional.

The next example illustrates how (2) of Theorem 6.4.1 can be used.

Example 6.4.4

If c1, c2, . . . , ck are independent columns in Rn, show that they are the first k columns in
some invertible n×n matrix.

Solution. By Theorem 6.4.1, expand {c1, c2, . . . , ck} to a basis
{c1, c2, . . . , ck, ck+1, . . . , cn} of Rn. Then the matrix A =

[
c1 c2 . . . ck ck+1 . . . cn

]
with this basis as its columns is an n×n matrix and it is invertible by Theorem 5.2.3.

Theorem 6.4.2
Let U and W be subspaces of the finite dimensional space V .

1. If U ⊆W , then dim U ≤ dim W .

2. If U ⊆W and dim U = dim W , then U =W .

Proof. Since W is finite dimensional, (1) follows by taking V = W in part (3) of Theorem 6.4.1.
Now assume dim U = dim W = n, and let B be a basis of U . Then B is an independent set in W .
If U 6=W , then span B 6=W , so B can be extended to an independent set of n+1 vectors in W by
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Lemma 6.4.1. This contradicts the fundamental theorem (Theorem 6.3.2) because W is spanned by
dim W = n vectors. Hence U =W , proving (2).

Theorem 6.4.2 is very useful. This was illustrated in Example 5.2.13 for R2 and R3; here is
another example.

Example 6.4.5

If a is a number, let W denote the subspace of all polynomials in Pn that have a as a root:

W = {p(x) | p(x) ∈ Pn and p(a) = 0}

Show that {(x−a), (x−a)2, . . . , (x−a)n} is a basis of W .

Solution. Observe first that (x−a), (x−a)2, . . . , (x−a)n are members of W , and that they
are independent because they have distinct degrees (Example 6.3.4). Write

U = span{(x−a), (x−a)2, . . . , (x−a)n}

Then we have U ⊆W ⊆ Pn, dim U = n, and dim Pn = n+1. Hence n ≤ dim W ≤ n+1 by
Theorem 6.4.2. Since dim W is an integer, we must have dim W = n or dim W = n+1. But
then W =U or W = Pn, again by Theorem 6.4.2. Because W 6= Pn, it follows that W =U , as
required.

A set of vectors is called dependent if it is not independent, that is if some nontrivial linear
combination vanishes. The next result is a convenient test for dependence.

Lemma 6.4.3: Dependent Lemma

A set D = {v1, v2, . . . , vk} of vectors in a vector space V is dependent if and only if some
vector in D is a linear combination of the others.

Proof. Let v2 (say) be a linear combination of the rest: v2 = s1v1 + s3v3 + · · ·+ skvk. Then

s1v1 +(−1)v2 + s3v3 + · · ·+ skvk = 0

is a nontrivial linear combination that vanishes, so D is dependent. Conversely, if D is dependent,
let t1v1 + t2v2 + · · ·+ tkvk = 0 where some coefficient is nonzero. If (say) t2 6= 0, then v2 =− t1

t2
v1 −

t3
t2

v3 −·· ·− tk
t2

vk is a linear combination of the others.

Lemma 6.4.1 gives a way to enlarge independent sets to a basis; by contrast, Lemma 6.4.3 shows
that spanning sets can be cut down to a basis.

Theorem 6.4.3
Let V be a finite dimensional vector space. Any spanning set for V can be cut down (by
deleting vectors) to a basis of V .
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Proof. Since V is finite dimensional, it has a finite spanning set S. Among all spanning sets
contained in S, choose S0 containing the smallest number of vectors. It suffices to show that S0
is independent (then S0 is a basis, proving the theorem). Suppose, on the contrary, that S0 is
not independent. Then, by Lemma 6.4.3, some vector u ∈ S0 is a linear combination of the set
S1 = S0 \{u} of vectors in S0 other than u. It follows that span S0 = span S1, that is, V = span S1.
But S1 has fewer elements than S0 so this contradicts the choice of S0. Hence S0 is independent
after all.

Note that, with Theorem 6.4.1, Theorem 6.4.3 completes the promised proof of Theorem 5.2.6 for
the case V = Rn.

Example 6.4.6

Find a basis of P3 in the spanning set S = {1, x+ x2, 2x−3x2, 1+3x−2x2, x3}.

Solution. Since dim P3 = 4, we must eliminate one polynomial from S. It cannot be x3

because the span of the rest of S is contained in P2. But eliminating 1+3x−2x2 does leave
a basis (verify). Note that 1+3x−2x2 is the sum of the first three polynomials in S.

Theorems 6.4.1 and 6.4.3 have other useful consequences.

Theorem 6.4.4
Let V be a vector space with dim V = n, and suppose S is a set of exactly n vectors in V .
Then S is independent if and only if S spans V .

Proof. Assume first that S is independent. By Theorem 6.4.1, S is contained in a basis B of V .
Hence |S|= n = |B| so, since S ⊆ B, it follows that S = B. In particular S spans V .

Conversely, assume that S spans V , so S contains a basis B by Theorem 6.4.3. Again |S|= n = |B|
so, since S ⊇ B, it follows that S = B. Hence S is independent.

One of independence or spanning is often easier to establish than the other when showing that a set
of vectors is a basis. For example if V =Rn it is easy to check whether a subset S of Rn is orthogonal
(hence independent) but checking spanning can be tedious. Here are three more examples.

Example 6.4.7

Consider the set S = {p0(x), p1(x), . . . , pn(x)} of polynomials in Pn. If deg pk(x) = k for
each k, show that S is a basis of Pn.

Solution. The set S is independent—the degrees are distinct—see Example 6.3.4. Hence S
is a basis of Pn by Theorem 6.4.4 because dim Pn = n+1.
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Example 6.4.8

Let V denote the space of all symmetric 2×2 matrices. Find a basis of V consisting of
invertible matrices.

Solution. We know that dim V = 3 (Example 6.3.11), so what is needed is a set of three
invertible, symmetric matrices that (using Theorem 6.4.4) is either independent or spans V .

The set
{[

1 0
0 1

]
,
[

1 0
0 −1

]
,
[

0 1
1 0

]}
is independent (verify) and so is a basis of the

required type.

Example 6.4.9

Let A be any n×n matrix. Show that there exist n2 +1 scalars a0, a1, a2, . . . , an2 not all
zero, such that

a0I +a1A+a2A2 + · · ·+an2An2
= 0

where I denotes the n×n identity matrix.

Solution. The space Mnn of all n×n matrices has dimension n2 by Example 6.3.7. Hence
the n2 +1 matrices I, A, A2, . . . , An2 cannot be independent by Theorem 6.4.4, so a
nontrivial linear combination vanishes. This is the desired conclusion.

The result in Example 6.4.9 can be written as f (A) = 0 where f (x) = a0 +a1x+a2x2 + · · ·+an2xn2 .
In other words, A satisfies a nonzero polynomial f (x) of degree at most n2. In fact we know that A
satisfies a nonzero polynomial of degree n (this is the Cayley-Hamilton theorem—see Theorem ??),
but the brevity of the solution in Example 6.4.6 is an indication of the power of these methods.

If U and W are subspaces of a vector space V , there are two related subspaces that are of interest,
their sum U +W and their intersection U ∩W , defined by

U +W = {u+w | u ∈U and w ∈W}
U ∩W = {v ∈V | v ∈U and v ∈W}

It is routine to verify that these are indeed subspaces of V , that U ∩W is contained in both U and
W , and that U +W contains both U and W . We conclude this section with a useful fact about the
dimensions of these spaces. The proof is a good illustration of how the theorems in this section are
used.

Theorem 6.4.5
Suppose that U and W are finite dimensional subspaces of a vector space V . Then U +W is
finite dimensional and

dim (U +W ) = dim U + dim W − dim (U ∩W ).

Proof. Since U∩W ⊆U , it has a finite basis, say {x1, . . . , xd}. Extend it to a basis {x1, . . . , xd , u1, . . . , um}
of U by Theorem 6.4.1. Similarly extend {x1, . . . , xd} to a basis {x1, . . . , xd , w1, . . . , wp} of W .
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Then
U +W = span{x1, . . . , xd , u1, . . . , um, w1, . . . , wp}

as the reader can verify, so U +W is finite dimensional. For the rest, it suffices to show that
{x1, . . . , xd , u1, . . . , um, w1, . . . , wp} is independent (verify). Suppose that

r1x1 + · · ·+ rdxd + s1u1 + · · ·+ smum + t1w1 + · · ·+ tpwp = 0 (6.1)

where the ri, s j, and tk are scalars. Then

r1x1 + · · ·+ rdxd + s1u1 + · · ·+ smum =−(t1w1 + · · ·+ tpwp)

is in U (left side) and also in W (right side), and so is in U ∩W . Hence (t1w1+ · · ·+ tpwp) is a linear
combination of {x1, . . . , xd}, so t1 = · · ·= tp = 0, because {x1, . . . , xd , w1, . . . , wp} is independent.
Similarly, s1 = · · ·= sm = 0, so (6.1) becomes r1x1 + · · ·+ rdxd = 0. It follows that r1 = · · ·= rd = 0,
as required.

Theorem 6.4.5 is particularly interesting if U ∩W = {0}. Then there are no vectors xi in the
above proof, and the argument shows that if {u1, . . . , um} and {w1, . . . , wp} are bases of U and
W respectively, then {u1, . . . , um, w1, . . . , wp} is a basis of U + W . In this case U +W is said to
be a direct sum (written U ⊕W ); we return to this in Chapter ??.

Exercises for 6.4

Exercise 6.4.1 In each case, find a basis for V that
includes the vector v.

a. V = R3, v = (1, −1, 1)

b. V = R3, v = (0, 1, 1)

c. V = M22, v =

[
1 1
1 1

]
d. V = P2, v = x2 − x+1

b. {(0, 1, 1), (1, 0, 0), (0, 1, 0)}

d. {x2 − x+1, 1, x}

Exercise 6.4.2 In each case, find a basis for V
among the given vectors.

a. V = R3,
{(1, 1, −1), (2, 0, 1), (−1, 1, −2), (1, 2, 1)}

b. V = P2, {x2 +3, x+2, x2 −2x−1, x2 + x}

b. Any three except {x2 +3, x+2, x2 −2x−1}

Exercise 6.4.3 In each case, find a basis of V con-
taining v and w.

a. V = R4, v = (1, −1, 1, −1), w = (0, 1, 0, 1)

b. V = R4, v = (0, 0, 1, 1), w = (1, 1, 1, 1)

c. V = M22, v =

[
1 0
0 1

]
, w =

[
0 1
1 0

]
d. V = P3, v = x2 +1, w = x2 + x

b. Add (0, 1, 0, 0) and (0, 0, 1, 0).

d. Add 1 and x3.
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Exercise 6.4.4

a. If z is not a real number, show that {z, z2} is a
basis of the real vector space C of all complex
numbers.

b. If z is neither real nor pure imaginary, show
that {z, z} is a basis of C.

b. If z= a+bi, then a 6= 0 and b 6= 0. If rz+sz= 0,
then (r+ s)a = 0 and (r− s)b = 0. This means
that r+ s = 0 = r− s, so r = s = 0. Thus {z, z}
is independent; it is a basis because dim C= 2.

Exercise 6.4.5 In each case use Theorem 6.4.4 to
decide if S is a basis of V .

a. V = M22;

S =

{[
1 1
1 1

]
,
[

0 1
1 1

]
,
[

0 0
1 1

]
,
[

0 0
0 1

]}
b. V = P3; S = {2x2, 1+ x, 3, 1+ x+ x2 + x3}

b. The polynomials in S have distinct degrees.

Exercise 6.4.6

a. Find a basis of M22 consisting of matrices with
the property that A2 = A.

b. Find a basis of P3 consisting of polynomials
whose coefficients sum to 4. What if they sum
to 0?

b. {4, 4x, 4x2, 4x3} is one such basis of P3. How-
ever, there is no basis of P3 consisting of poly-
nomials that have the property that their coef-
ficients sum to zero. For if such a basis exists,
then every polynomial in P3 would have this
property (because sums and scalar multiples
of such polynomials have the same property).

Exercise 6.4.7 If {u, v, w} is a basis of V , deter-
mine which of the following are bases.

a. {u+v, u+w, v+w}

b. {2u+v+3w, 3u+v−w, u−4w}

c. {u, u+v+w}

d. {u, u+w, u−w, v+w}

b. Not a basis.

d. Not a basis.

Exercise 6.4.8

a. Can two vectors span R3? Can they be lin-
early independent? Explain.

b. Can four vectors span R3? Can they be lin-
early independent? Explain.

b. Yes; no.

Exercise 6.4.9 Show that any nonzero vector in a
finite dimensional vector space is part of a basis.

Exercise 6.4.10 If A is a square matrix, show that
det A = 0 if and only if some row is a linear combi-
nation of the others.
det A = 0 if and only if A is not invertible; if and only
if the rows of A are dependent (Theorem 5.2.3); if
and only if some row is a linear combination of the
others (Lemma 6.4.2).

Exercise 6.4.11 Let D, I, and X denote finite,
nonempty sets of vectors in a vector space V . As-
sume that D is dependent and I is independent. In
each case answer yes or no, and defend your answer.

a. If X ⊇ D, must X be dependent?

b. If X ⊆ D, must X be dependent?

c. If X ⊇ I, must X be independent?

d. If X ⊆ I, must X be independent?
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b. No. {(0, 1), (1, 0)} ⊆ {(0, 1), (1, 0), (1, 1)}.

d. Yes. See Exercise 6.3.15.

Exercise 6.4.12 If U and W are subspaces of V and
dim U = 2, show that either U ⊆W or dim (U ∩W )≤
1.

Exercise 6.4.13 Let A be a nonzero 2×2 matrix
and write U = {X in M22 | XA = AX}. Show that
dim U ≥ 2. [Hint: I and A are in U .]

Exercise 6.4.14 If U ⊆R2 is a subspace, show that
U = {0}, U = R2, or U is a line through the origin.

Exercise 6.4.15 Given v1, v2, v3, . . . , vk,
and v, let U = span{v1, v2, . . . , vk} and
W = span{v1, v2, . . . , vk, v}. Show that
either dim W = dim U or dim W = 1 + dim U .

If v ∈ U then W = U ; if v /∈ U then
{v1, v2, . . . , vk, v} is a basis of W by the inde-
pendent lemma.

Exercise 6.4.16 Suppose U is a subspace of P1,
U 6= {0}, and U 6= P1. Show that either U = R or
U = R(a+ x) for some a in R.

Exercise 6.4.17 Let U be a subspace of V and
assume dim V = 4 and dim U = 2. Does every basis
of V result from adding (two) vectors to some basis
of U? Defend your answer.

Exercise 6.4.18 Let U and W be subspaces of a
vector space V .

a. If dim V = 3, dim U = dim W = 2, and U 6=W ,
show that dim (U ∩W ) = 1.

b. Interpret (a.) geometrically if V = R3.

b. Two distinct planes through the origin (U and
W ) meet in a line through the origin (U ∩W ).

Exercise 6.4.19 Let U ⊆W be subspaces of V with
dim U = k and dim W = m, where k < m. If k < l < m,
show that a subspace X exists where U ⊆ X ⊆W and
dim X = l.

Exercise 6.4.20 Let B = {v1, . . . , vn} be a maxi-
mal independent set in a vector space V . That is, no
set of more than n vectors S is independent. Show
that B is a basis of V .

Exercise 6.4.21 Let B = {v1, . . . , vn} be a min-
imal spanning set for a vector space V . That is, V
cannot be spanned by fewer than n vectors. Show
that B is a basis of V .

Exercise 6.4.22

a. Let p(x) and q(x) lie in P1 and suppose that
p(1) 6= 0, q(2) 6= 0, and p(2) = 0 = q(1). Show
that {p(x), q(x)} is a basis of P1. [Hint: If
rp(x)+ sq(x) = 0, evaluate at x = 1, x = 2.]

b. Let B = {p0(x), p1(x), . . . , pn(x)} be a set of
polynomials in Pn. Assume that there exist
numbers a0, a1, . . . , an such that pi(ai) 6= 0 for
each i but pi(a j) = 0 if i is different from j.
Show that B is a basis of Pn.

Exercise 6.4.23 Let V be the set of all infinite
sequences (a0, a1, a2, . . .) of real numbers. Define
addition and scalar multiplication by

(a0, a1, . . .)+(b0, b1, . . .) = (a0 +b0, a1 +b1, . . .)

and
r(a0, a1, . . .) = (ra0, ra1, . . .)

a. Show that V is a vector space.

b. Show that V is not finite dimensional.

c. [For those with some calculus.] Show that the
set of convergent sequences (that is, lim

n→∞
an ex-

ists) is a subspace, also of infinite dimension.

b. The set {(1, 0, 0, 0, . . .), (0, 1, 0, 0, 0, . . .),
(0, 0, 1, 0, 0, . . .), . . .} contains independent
subsets of arbitrary size.

Exercise 6.4.24 Let A be an n × n matrix of
rank r. If U = {X in Mnn | AX = 0}, show that
dim U = n(n− r). [Hint: Exercise 6.3.34.]

Exercise 6.4.25 Let U and W be subspaces of V .
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a. Show that U +W is a subspace of V containing
both U and W .

b. Show that span{u, w}=Ru+Rw for any vec-
tors u and w.

c. Show that

span{u1, . . . , um, w1, . . . , wn}
= span{u1, . . . , um}+ span{w1, . . . , wn}

for any vectors ui in U and w j in W .

b. Ru+Rw= {ru+sw | r, s in R}= span{u, w}

Exercise 6.4.26 If A and B are m× n matrices,
show that rank (A+B)≤ rank A+ rank B. [Hint: If U
and V are the column spaces of A and B, respectively,
show that the column space of A+B is contained in
U +V and that dim (U +V ) ≤ dim U + dim V . (See
Theorem 6.4.5.)]
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Supplementary Exercises for Chapter 6

Exercise 6.1 (Requires calculus) Let V denote the
space of all functions f : R→R for which the deriva-
tives f ′ and f ′′ exist. Show that f1, f2, and f3 in V
are linearly independent provided that their wron-
skian w(x) is nonzero for some x, where

w(x) = det


f1(x) f2(x) f3(x)

f ′1(x) f ′2(x) f ′3(x)

f ′′1 (x) f ′′2 (x) f ′′3 (x)


Exercise 6.2 Let {v1, v2, . . . , vn} be a basis of Rn

(written as columns), and let A be an n×n matrix.

a. If A is invertible, show that {Av1, Av2, . . . , Avn}
is a basis of Rn.

b. If {Av1, Av2, . . . , Avn} is a basis of Rn, show
that A is invertible.

b. If YA = 0, Y a row, we show that Y =
0; thus AT (and hence A) is invertible.

Given a column c in Rn write c = ∑
i

ri(Avi)

where each ri is in R. Then Yc =

∑
i

riYAvi, so Y =Y In =Y
[

e1 e2 · · · en
]
=[

Ye1 Ye2 · · · Yen
]
=

[
0 0 · · · 0

]
=

0, as required.

Exercise 6.3 If A is an m×n matrix, show that A
has rank m if and only if col A contains every column
of Im.

Exercise 6.4 Show that null A= null (AT A) for any
real matrix A.
We have null A ⊆ null (AT A) because Ax = 0 im-
plies (AT A)x = 0. Conversely, if (AT A)x = 0, then
‖Ax‖2 = (Ax)T (Ax) = xT AT Ax = 0. Thus Ax = 0.

Exercise 6.5 Let A be an m× n matrix of rank
r. Show that dim (null A) = n− r (Theorem 5.4.3) as
follows. Choose a basis {x1, . . . , xk} of null A and
extend it to a basis {x1, . . . , xk, z1, . . . , zm} of Rn.
Show that {Az1, . . . , Azm} is a basis of col A.
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